Distributions

Gamma distribution

The vertical lines are the means

$X$ is Gaussian, $Y$ is Gaussian, $(X,Y)$ is not a Gaussian r.v.

Contaminated Normals (Mixture of a Gaussian with high and low variance)

Multivariate Normal distribution

Chi square distribution

Student t-distribution

Inverse CDF to generate a random variable

$X\sim \mathcal{E}(\lambda)$ -> $F_X(t) = 1-e^{\lambda t}$ so $F^{-1}(u) = -\log(1-u)/\lambda$

Let $U\sim \mathcal{U}([0, 1])$ then $X=F^{-1}(U)\sim \mathcal{E}(\lambda)$