Plotting multidimensional densities

Consider the r.v. $(X,Y)$ with density $f_{X,Y}(x,y) = 9/8(4x+y)\sqrt{(1-x)(1-y)}$

Normalization

$ \mathbb{P}(X<Y)$ = $\int_{x<y} f(x,y) dx dy$

$\operatorname{Cor}(X,Y) = 0$ does not imply Independence.

Same mean, same variance, same covariance BUT different distribution